Hall Ticket No.:

MALINENI LAKSHMAIAH WOMEN'S ENGINEERING COLLEGE (AUTONOMOUS)

I-MCA I-Semester (MR23) Regular Examinations, March - 2024 Computer Organization \& Operating Systems
Time: 3 hours
Max. Marks: 70

Answer ALL the questions

$\begin{array}{\|c} \hline \text { Q. } \\ \text { No. } \end{array}$		Question	Marks	CO	BL
1	a	Explain in detail the functions of the main hardware components of a computer system.	(7M)	CO1	L2
	b	What is a Bus in Computer system? With a neat sketch, explain the Bus system connecting the main components of a computer system.	(7M)	CO1	L2
(OR)					
2	a	Explain about different types of addressing modes in microprocessor.	(7M)	CO1	L2
	b	Describe the basic operations of Stacks and Queues. And also explain the role of Stacks and Queues in computer system.	(7M)	CO1	L1

$\mathbf{3}$	a	Show a possible control sequence for implementing the arithmetic instruction MUL R1, R2.	$(7 \mathrm{M})$	CO 2	L 3	
	b	Explain in details about micro instruction sequencing and execution.	$7 \mathrm{M})$	CO 2	L 2	
	(OR)					$(7 \mathrm{M})$
4	a	Depict the sequence of register transfers involved in the execution of an instruction.	L 2			
	b	With a neat sketch, demonstrate the general configuration of a micro programmed control unit.	$(7 \mathrm{M})$	CO 2	L 2	

$\mathbf{5}$	a	Discuss the services provided by operating system for efficient system operation.	$(7 \mathrm{M})$	CO3	L2	
	b	Explain various fields of Process Control Block.	$(7 \mathrm{M})$	CO3	L2	
	(OR)					
	a	Explain the various categories of system calls provided by an operating system.	$(7 \mathrm{M})$	CO3	L3	

b	b	Consider a set of 5 processes whose arrival and burst times are given below. Draw the Grant Chart illustrating the execution of these jobs using Round Robin CPU scheduling algorithm (Assume time quantum $=1$ unit) and also calculate the average waiting time and average turnaround time.	$(7 \mathrm{M})$	CO 3	L2

7	a	Show that, if the wait and signal operations are not executed automatically, then mutual exclusion may be violated.	(7M)	CO 4	L3
	b	A system is having 3 user processes P1, P2 and P3 where P1 requires 21 units of resource $\mathrm{R}, \mathrm{P} 2$ requires 31 units of resource R, P3 requires 41 units of resource R . Calculate the minimum number of units of R that ensures no deadlock.	(7M)	CO 4	L2
(OR)					
8	a	State the critical section problem. Illustrate the software based solution to the Critical section problem.	(7M)	CO 4	L3
	b	Discuss the necessary conditions that cause deadlock situation to occur.	(7M)	CO 4	L3

| $\mathbf{9}$ | | | Consider the following page reference string.
 $1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6$
 How many page faults would occur for the optimal page
 replacement algorithm, assuming 3 frames and all frames are
 initially empty. | $(7 \mathrm{M})$ | CO5 |
| :---: | :---: | :--- | :--- | :--- | :--- | L1

